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Presented at the 46th Shock and Vibration Symposium, San Diego, October 1975.

Finite Element Solution of Fluid-Structure

Interaction Problems

Erwin A. Schroeder and Melvyn S. Marcus

Computation and Mathematics Department

David W. Taylor Naval Ship R&D Center

Bethesda, Maryland 20084

ABSTRACT

A finite element method for computing natural frequencies of a

submerged structure is implemented using a structural analysis program to

solve a sample problem. In this method, the structure and the surrounding

fluid are represented by finite elements. Finite element solutions of the

sample problem compare well with an analytic solution for both coasistent

and lumped formulations of the fluid-structure interaction effects.

INTRODUCTION

The method of Zienkiewicz and Newton for solving fluid-structure

interaction problems, one of several developed to address such problems,

uses finite elements to represent both the structure and the fluid; in the
flui.' the unknown is the pressure field. We used the two-dimensional problem

of finding natural frequencies of a ring surrounded by fluid to explore the

characteristics of this method and the practicality of using a finite element

structural analysis program to apply it. Althovhj this paper deals with only

two-dimensional problems, the finite elemeat method is applicable to three-

dimensional problems involving generally shaped structures, and eventually we
intend to explore such applications and transient problems as well.

In this investigation we considered the amount of fluid required to

obtain adequate modeling, the effect of element size on accuracy, and the

1 Zienkiewicz, O.C. and Newton, R.E., Coupled Vibrations of a Structure

Submerged in a Compressible Fluid, Proc. Int. Symp. on Finite Element
Techniques, Stuttgart, 1969.
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ways in which the method handles various vibration modes. We also compared

a lumped representation of the fluid-structure interaction with a consistent

K, representation,

An extension of the method of Zienkiewicz and Neiwton was used by

Hunt et al 2 to determine the acoustic radiation from a piezoelectric cylinder.

"Everstine et al3 reviewed this and other methods for fluid-structure inter-

action problems and point out advantages and disadvantages among them.

A FINITE ELEMENT REPRESEINTATION OF A VIBRATING FLUID-STRUCTURE SYSTE'!

The method of Zienkiewicz and Newton represents both the structure and

the fluid with finite elements. The finite elements determine displacements

in the structure and a pressure field in the fluid. These representations

produce one system of linear algebraic equations for the structure and a

second for the fluid. The two systems are coupled by terms resulting from

dynamic interactions at the fluid-structure boundary. Solving an algebraic

eigenvalue problem yields the natural frequencies of the fluid-structure

system.

The system of linear algebraic equations that represents the structure

is written in the form of a matrix equation

M6 -1K6 -f (1)

where
6 and 6 are vectors of displacements and accelerations at grid

points in the structure,

M and K are mass and stiffness matrices for the structure, and

f is a vector of generalized external forces acting on the

structure.

Each component fi of the vector f of generalized forces corresponds

to a displacement 6i at a grid point a in the structure. If the point a is

on the surface S of the structure that is acted on by the fluid pressure p,

2 Hunt, J.T., Knittel, M.R., and Barach, D., Finite Element Approach to

Acoustic Radiation from Elastic Structures, J. Acoust. Soc. Am., pp. 269-280,
Vol. 55, 1974.

3
Everstine, G.C., Schroeder, E.A., and Marcus, M.S., The Dynamic Analysis of

Submerged Structures, NASTRAN: User' s Experiences, Colloquium held at Langley
Research Center, Hampton, Virginia, September 1975.
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the generalized force componont is given by

f f N ninp dS (2)
%~Ss

where N. is the .hape function corresponding to 6i, and n. is the

component in the direction of the displacement 6i of the unit vector n

normal to S and directed out of the fluid region. The fluid pressure is

expressed as a linear combination of shape functions F. defined in the

region containing fluid

p = £. ,. F. (3)

iii

in which each represents the pressure at a grid point in the fluid. With

inner product notation used for conciseness, the component of generalized

force maybe written in the form

f. < N' F .> (4)

where

N. = n. N.

Equation (4) is written in matrix form using the "boundary matrix B

f = B* (6)

where 4 is the vector of fluid pressures at grid points in the fluid, and
the consistent formulation of the boundary matrix is

B- [<N', F.>] (7)
d1.

An alternative to the consistent formulation of the boundary matrix is
the lumped formulation. To evaluate the integral in Equation (2) for the

lumped formulation, the fluid pressure is assumed to be constant over the
element faces ek lying on the fluid-structure boundary that contain the grid
point a. If the constant value is taken to be the pressure at the point a,
Equation (2) becomes

fi = i nir f Ni dS
e

73
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The sum is taken over all element faces e connected to the grid point a.k
When the configuration of the element faces and the shape functions are

given, this sum can be computed. For th. lumped formulation, the boumdary

matrix is diagonal:

B diag[ni E f Ni dS] (8)
ek

Using the boundary matrix B in either the consistent or the lumped

formulation, we substitute Equation (6) into Equation (1). Then the finite

element matrix equation for the structure including the effects of fluid

pressure on the fluid-structure boundary is

M + K6 - B* = 0 (9)

A similar matrix equation is needed to represent the pressure field

in the fluid. To obtain a finite element matrix equation for the fluid, the

fluid is assumed to be an acoustic medium; that is, it has a pressure field

p defined by the wave equation

- Vp =0 (10)
c

where c is the speed of sound in the fluid. The pressure field is expanded in

terms of shape functions (Equation (2)), and the Galerkin method is applied

to the wave equation (Reference 1) to get the following equation:

Qw *H*- {I F. PdSi= (01)
S a.

where Q 1 1 <Pit F.> ] and H = [ <vFi, VF.>
c

The boundary term appears in the ith iquation of the system, Equation (11),

"only if is the pressure at a grid point on the boundary of the fluid region.

The integral in the boundary term is the sum of integrals contributed by

various sections of the fluid region boundary. Equation (11) -will be the

required matrix equation for the fluid after the form of the boundary term

is converted to a matrix multiplied by the vector 6.

4



"M, .....

-- The contribution of the fluid-structure boundary to this boundary

term is due to the effect of the structure's motion on the fluid pressure.
_ - On the fluid-structure boundary, the boundary condition is

--- Pf
an n

where fi is the unit vector normal to the boundary, 5. is the normal component

of the boundary's acceleration, and Pf is the fluid's density. With the
shape functions Nj (Equation (S)) which incorporate components of fi, the

acceleration of the structure's boundary can be expressed by

5.=E N.'6
n

"Therefore the contribution of the fluid-structure boundary to the boundary

term is

Pf E 6i<N:, -- p

The remaining contributions to the boundary term in Equation (11), due

to boundaries of the fluid region other than the fluid-structure boundary,

are zero as is next shown. The finite element method used here represents
with finite elements only a finite portion of a fluid that extends to infinity
and all significant changes in the fluid region are assumed to occur within

this finite region. This assumption is reflected by setting either the
pressure or the normal derivative of the pressure equal to zero on the outer

boundary of the fluid region. (The method as presented here makes no

provisions for radiation from the outer boundary.) On the sections of the
fluid boundary formed by a plane of symmetry, the normal derivative ap/afi

equals zero; on the sections bounded by a plane of anti-symmetry the pressure p

equals zero. Therefore, on these boundaries either 3p/3fi = 0 and the boundary
term is zero, or *i is constrained to equal zero. Constraining *i to be
zero on the boundary has the effect of removing the ith equation from
Equation (11). Thus on these boundaries the contribution of the boundary term

is zero.

- f.
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From the preceding remark and from Equation (12) the fluid finite

element matrix equation, which includes effects of motion of the structure

on the fluid pressure, is

Q+ H + P+fBT 6=0 (13)

As stated before, the boundary matrix may be computed by either the consistent

or lumped formulation.

Finally, combining Equations (9) and (13) gives the matrix finite

element equation for the fluid-structure system

[ZBT o] + [: -] )1IfBT Q 0 H

If a sinusoidal time dependence with frequency w is assumed, so that
6 = - ,26 and 2 = - 2,, the preceding matrix equation becomes the matrix

eigenvalue problem: 2 [P M] [K -BI
•.det = 0I=(14)

The roots w of this equation are the natural frequencies of the fluid-structure

system.

To set up and solve this eigenvalue problem, we used the digital computer

program NASTRAN. NASTRAN can be manipulated to compute the submatrices,

assemble the combined problem, and solve for the natural frequencies.

M)DELING FLUID-STRUCTURE SYSTEMS USING STRUCTURAL FINITE ELEM4ENTS

This finite element method for representing vibrations of fluid-structure

systems uses standard structural finite elements to represent the submerged

structure and adapted structural elements to represent the surrounding fluid.

Although the simple problem used here represents a two-dimensional system, a

similar method can be applied to three-dimensional systems.
In two dimensions, the fluid is represented by elastic membrane elements

in which one component of displacement is identified with the fluid pressure,

6



the other comr:.aent is constrained to equal zero, and the material parameters

are chosen .. that the resulting pressure field satisfies the wave equation.

To compute the entries in a consistent boundary matrix, it is convenient to
use modified extensional rods connected betwe-en grid points on the fluid-

structure boundary. The entries in a lumped boundary matrix are precomputed

and entered directly.

The finite element representation of the structure is formed by the usual.

methods and is not elaborated upon hete. This representation of the structure

produces the matrices M and K for Equation (14).

The finite element representation of the fluid region is formed by

analogy using elastic membrane elements. For an acoustic medium, the two.
dimensional pressure fieId p (force/unit length) satisfies the wave equation

2 ~22

ct A x ay

The displacements of the elastic membrane elements are u and v in the x and
y directions. The differential equations for planar motions of the membrane

are determined by the Nwo-dimensional elastic modulus matrix for anisotropic

material
G(i G2 GI3

'11 12 13
Gm C'[21 Cý22 623{

a G 6o G j031 032 033]

The anisotropic matrix is used for its flexibility in choosing material

parameters. In general, if the orientation of a finite element is such that the

element forms an angle B with the anisotropic material axis, the elastic
modulus matrix for the element is obtained by the transformation

Ge u T ,m U

where

7
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For the consistent formulation, the boundary matrix (see Equation (7))
"B- [<N', F.>]

represents interactions at the fluid-structure boundary. We will consider

the contribution to B from a fluid-structure boundary segment between grid

points a and b. Let 6 and 6ay be the displacem2nts in the x and y directions

and pa and Pb be the pressures at grid points a and b. The submatrix of B
that couples these displacements with these pressures is

n Nax, Fa nx<ax' b

[ny<Nay' Fa> ny<Nay, F b>

In these terms, the integration is restricted to the segment between a and b.

A similar matrix couples 6bx and 6 by with pa and Pb" Since the entries in
these imutrices are similar to entries in the mass matrix of an extensional

rod couiaecting a and b, a minor modification of an extensional rod element will
produce these entries for the boundary matrix B in Equation (14).

To illustrate the computation of entries in the boundary matrix for the

lumped formulation, we used a typical case in which two segments of a two-

dimensional fluid-structure boundary join at the grid point b, as shown in

Figure 1.
8 by

Cyy

b FLUID 
8 bx

1lEGION
"STRUCTURE

A
n

Figure I - A Typical Section of a Fluid
Structure Boundary
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For the lumped formulation, the fluid pressure on the surface segments

connected to the grid point b is taken to equal the pressure pb at the grid

point. Also the unit vector n normal to the fluid-structure boundary at b

is taken to be the unit vector whose direction is midway between the normal

vectors on either side of b. Then the generalized force applied to b in the

direction of 6bx is approximated by (see Equation (2))

c%n %ld-= i•:Pb nx f Nbx ds

a

where nx is the component of A in the direction 6bx' and Nb, is the shape

function corresponding to 6bx* Recall that in the two-dimensional case p

"has dimensions: force/unit length. If the average length of the segments

from a to b and from b to c is L, this approximation oeccxus

pb L cos yX

where yx is the angle between n and the direction of 6bx* Similarly, the

generalized force applied to b in the direction of 6bx is approximated by

I% L cos Yy

Therefore, the contribution to the boundary matrix that couples 6bx and 6by
with Pb is

L cos Yx L cos y ] (16)

These numbers are precomputed for each fluid-structure boundary grid point

and entered directly into the fluid-structure matrix equation.

NUDELING FLUID-STRUCTURE SYSTEMS USING A STRUCTURAL ANALYSIS PROGRAM

A general purpose finite element structural analysis computer program
can be used to model the structure with the usual structural elements and the

surrounding fluid with adapted membrane finite elements. The input data which

describe the material properties, coordinate directions, and degrees of freedom

associated with the membrane element set are tailored to the fluid analogy.

10



For the consistent formulatian, a third set of finite elements (boundary

elements) is introduced at the fluid-structure interface. A schematic

representation of a section of the fluid-structure boundary is shown in

Figure 2.

In implementing the consistent formulation, an option to compute

the fluid-structure coupling matrix B is added (through minor program

modification) to the subroutine which normally computes the consistent mass

matrix for the boundary finite elements.

Thus, from the configuration of structural, fluid, and boundary elements,

the following block diagonal composite mass and stiffness matrices are

formed:

[N B 3 K D

Then, options typically available in finite element computer programs with

matrix interpretive capabilities are used to interrupt the normal flow of the

standard eigenvalue analysis to partition, reduce, and rearrange the composite

matrices to form the matrices required for Equation (14). (The stiffness

matrix D associated with the boundary elements is discarded.) Then the

normal flow of the eigenvalue analysis is resumed.

In implementing the lumped version, the coupling terms L cos yx and

L cos Ty (as derived for Equation (16)) are precomputed and inserted in the

stiffness matrix for the fluid-structure system in the column corresponding
to the pressure variable of the fluid grid point bf , and in rows corresponding

1
to the structural displacements in the x- and y-coordinate directions,
respectively, of the structural grid point bs.. (The spatial grid point b is1
represented as b.i and bfi within the sets of structural and fluid grid points,

respectively, which lie at the fluid-structure boundary.) Similarly, the

terms -pf • L cos Y. and -pf • L cos yry are precomputed and inserted in the

mass matrix for the fluid-structure system in the row corresponding to the

pressure variable of the fluid grid point bfi, and in columns corresponding

to the structural displacements in the x- and y-coordinate directions,

respectively, of the structural grid point bsi. This coupling condition may

be implemented directly through the input data to finite element structural

analysis programs such as NASTRAN.

S~11
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Figure 2 - Schematic Representation of a Section of the Fluid-Structure Boundary
s.: structural elemenls, hi: houndary element,. fi: fluid elements

Grid points 21. 602. 802. 31, 603, 803; etc., have the sane spatial coordinates. The boundary elements
b. are present for the consistent version only.
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COMPARISON OF FINITE ELEMENT RESULTS WITH ANALYTIC SOLUTION
FOR A SAMPLE PROBLEIMi

To study the effectiveness of the finite element pressure formulation,

the two-dimensional vibrations of a ring surrounded by a compressible fluid

were computed using the structural analysis computer program NASTRAN. The

results of both consistent and lumped formulations were compared with an
4

analytic solution. The steel ring, 25.4 cm in radius and 0.635 an thick

(and of unit depth),vibrates in water.

The finite element mesh consists of (N8 + 1)x(Nr + 1) spatial grid points

which are determined by the intersection of (Nr + 1) concentric circles with

(N8 + 1) lines radiating at N. equal intervals of the cylindri-al coordinate 6.

The ring, which is represented by the innermost circle, is modeled by N6 bar
elements, the fluid by (N8 x Nr) quadrilateral membrane elements. For the

consistent formulation only, N6 rod elements are added to the model at the
fluid-structure boundary. To optimize numerical accuracy, the aspect ratio

(ratio of longest to shortest side) of the fluid elements was kept as near

unity as possible. Because of its symmetry, the problem may be modeled using

only the first quadrant. A mesh with No - 8 and Nr = 6 is shown in Figure 3.

The finite element frequencies obtained for several even modes and the

corresponding analytic values are compared in Table 1. Computer generated

plots showing deformation patterns (mode shapes) of the structure and contour

lines of constant pressure in the scalar fluid pressure field were obtained

using NASTRAN plotting options. These plots resulted from solutions obtained

using real eigenvalue analysis. Figure 4 shows plots obtained with the

consistent formulation for the case N. = 8, Nr = 6, and the boundary condition

p = 0 applied at an outer radius of 82.8 cm. For each of the four plots
corresponding to modes 0, 2, 4, and 6, the mode shapes appear in the lower

left corners, underlayered by the undeformed ring. To the right are contour
plots showing lines of constant pressure corresponding to eleven equally

spaced values of pressure ranging from the minimum (label 1) to the maximum

(label 11) value in the pressure field solution.

Schroeder, E.A. and Marcus, M.S., Natural Frequencies of a Submerged Ring,
Computation and Mathematics Departmental Report (ID-27-74, David W. Taylor Naval
Ship Research and Development Center (1974).
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Figure 3 - Finite Element Mesh for Sample Problem
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TABLE I - NATURAL FREQUENCIES OF THE RING
"(Radians per second)

Analytic Results 2 4 6

no fLuid, vacuum at 25.4 cm "5 392.0 2126 5044
"finite fluid, vacuum at 55. 6680 231.2 1433 3725

finite fluid, vacuum at 68.. 5389 227.7 1432 3724

finite fluid, vacuum at 82.8 cm 4364 226.1 1432 3724

infinite fluid, no incoming 18191 224.7 1432 3724
waves

FINITE ELEMENT RESULTS (Vacuum at Outer Radius)

N N Outer Radius FE ModesNo N Nr2L (an) Formul~ation 0 24 6
8 0 25.4 consistent 20277 393.9 2137 5074

8 4 55.9 consistent 6642 240.5 1563 4221

8 5 68.1 consistent 5353 237.0 1562 4221

8 6 82.8 consistent 4340 235.4 1562 4221

8 4 55.9 consistent 6642 240.5 1563 4221

16 8 55.9 consistent 6672 233.5 1468 3869

32 16 55.9 consistent 6680 231.8 1442 3762

8 6 32.8 consistent 4340 235.4 1562 4221

16 12 82.8 consistent 4357 228.4 1466 3869

32 24 82.8 consistent 4362 226.6 1441 3762

8 6 82.8 lumped 4333 231.6 1486 3884

16 12 82.8 lumped 4356 227.5 1447 3776

32 24 82.8 lumped 4362 226.4 1436 3738

15
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MODE 4 MODE 6

Figure 4 - Deformation and Pressure Contours
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DISCUSSION OF RESULTS

Use of NASTRAN to implement the finite element pressure formulation

by using structural elements to serve, by analogy, as fluid elements'1 proceeded smoothly. Altering NASTRAN' s standard procedures to assemble

the mass and stiffness matrices for the combined fluid-structure problem

and to insert the lumped boundary matrix presented no problem. The extensional

rod element was modified to compute the consistent boundary matrix without

difficulty.
Table 1 shows that, for modes 2, 4, and 6, the analytic solution for

fluid regions with finite radii converges quickly to the solution for an

infinite fluid region. But for mode 0 no such convergence is indicated. The

same behavior is evident for the finite element solution for meshes with

No = 8, for which the vacuun boundary condition (p=C ) was imposed at the

successively larger radii, 55.9 c, 68.1 on, and 82.8 cm. These trials show

that extending the radius of the fluid region from 2.2 to 2.7 structural radii

changes the frequencies of modes 4 and 6 by less than one percent. Extending

the fluid radius from 2.7 to 3.3 structural radii changes the frequency of

mode 2 by less than one percent.

Effects of element size on accuracy were studied by successively refineir.
the finite element grid for fluid regions with radii 55.9 on and 82.8 on.
The frequencies for these trials are given in Table 1 and the percent of

deviation from the analytic solutions for the same radii are given in Table 2.

In all cases the error is seen to decrease approximately as the square of the

element size.

Accuracy of the frequencies relative to the frequencies obtained analytically

and their convergence to the frequency of the infinite fluid region also depends

on the mode of vibration. The higher mode required a more refined finite

element grid than the lower modes to achieve equal accuracy. On the other hand,

the frequencies of higher modes converge at smaller radii than do those of the

lower modes. Although mode 0 does not converge at all as the radius increases,

the finite element method gives an accurate estimate of the analytic frequency

for equal radii.

For this problem, the lumped formulation of the fluid-structure boundary

interaction produced results more accurate than the consistent formulation. Also,

"17



TABLE 2 - PERCENTAGE ERRORS FOR FINITE FLUID NUMERICAL RESULTS

N'N Outer Radius FE _odes

Ne Nr c Formulat ion 0 2 4 6

-- 98 4 .consistent 0.6 4.0 9.1 13.3

16 8 55.9 consistent 0.1 1.0 2.4 3.9

32 16 $5.9 consistent 0.0 0.3 0.6 1.0

8 6 82.8 consistent o.6 4.1 9.1 13.3

16 12 82.8 consistent 0.2 1.0 2.4 3.9

32 24 82.8 consistent 0.0 0.2 0.6 1.0

8 6 82.8 lumped 0.7 2.4 3.7 4.3

16 12 82.8 lumped 0.1 0.6 1.0 1.4

32 24 82.8 lumped 0.0 0.1 0.3 0.4

the accuracy remained higher as the mode increased. These results suggest

"that a lumped formlation should be considered for a fluid-structure inter-

action problem unless the complexity of the problem precludes its use.
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